MCIMX6QP6AVT1AB NXP

MCIMX6QP6AVT1AB   NXP
MCIMX6QP6AVT1AB   NXP
MCIMX6QP6AVT1AB   NXP
MCIMX6QP6AVT1AB   NXP

MCIMX6QP6AVT1AB NXP

Available
MCIMX6QP6AVT1AB   NXP

• Arm Cortex-A9 MPCore 4xCPU processor (with TrustZone®) • The core configuration is symmetric, where each core includes: — 32 KByte L1 Instruction Cache — 32 KByte L1 Data Cache
— Private Timer and Watchdog — Cortex-A9 NEON MPE (Media Processing Engine) Co-processor The Arm Cortex-A9 MPCore complex includes: • General Interrupt Controller (GIC) with 128 interrupt support • Global Timer • Snoop Control Unit (SCU) • 1 MB unified I/D L2 cache, shared by two/four cores • Two Master AXI (64-bit) bus interfaces output of L2 cache • Frequency of the core (including Neon and L1 cache) as per Table 6. • NEON MPE coprocessor — SIMD Media Processing Architecture — NEON register file with 32x64-bit general-purpose registers — NEON Integer execute pipeline (ALU, Shift, MAC) — NEON dual, single-precision floating point execute pipeline (FADD, FMUL) — NEON load/store and permute pipeline The SoC-level memory system consists of the following additional components: • Boot ROM, including HAB (96 KB) • Internal multimedia / shared, fast access RAM (OCRAM, 512 KB) • Secure/non-secure RAM (16 KB) • External memory interfaces: — 16-bit, 32-bit, and 64-bit DDR3-1066, DDR3L-1066, and 1/2 LPDDR2-800 channels, supporting DDR interleaving mode, for dual x32 LPDDR2 — 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bit. — 16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces. — 16/32-bit PSRAM, Cellular RAM Each i.MX 6DualPlus/6QuadPlus processor enables the following interfaces to external devices (some of them are muxed and not available simultaneously): • Hard Disk Drives—SATA II, 3.0 Gbps • Displays—Total five interfaces available. Total raw pixel rate of all interfaces is up to 450 Mpixels/sec, 24 bpp. Up to four interfaces may be active in parallel. — One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual HD1080 and WXGA at 60 Hz) — LVDS serial ports—One port up to 170 Mpixels/sec (for example, WUXGA at 60 Hz) or two ports up to 85 MP/sec each — HDMI 1.4 port — MIPI/DSI, two lanes at 1 Gbps
— Parallel Camera port (up to 20 bit and up to 240 MHz peak) — MIPI CSI-2 serial camera port, supporting up to 1000 Mbps/lane in 1/2/3-lane mode and up to 800 Mbps/lane in 4-lane mode. The CSI-2 Receiver core can manage one clock lane and up to four data lanes. Each i.MX 6DualPlus/6QuadPlus processor has four lanes. • Expansion cards: — Four MMC/SD/SDIO card ports all supporting: – 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104 mode (104 MB/s max) – 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) • USB: — One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY — Three USB 2.0 (480 Mbps) hosts: – One HS host with integrated High Speed PHY – Two HS hosts with integrated High Speed Inter-Chip (HS-IC) USB PHY • Expansion PCI Express port (PCIe) v2.0 one lane — PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint operations. Uses x1 PHY configuration. • Miscellaneous IPs and interfaces: — SSI block capable of supporting audio sample frequencies up to 192 kHz stereo inputs and outputs with I2 S mode — ESAI is capable of supporting audio sample frequencies up to 260 kHz in I2S mode with 7.1 multi channel outputs — Five UARTs, up to 5.0 Mbps each: – Providing RS232 interface – Supporting 9-bit RS485 multidrop mode – One of the five UARTs (UART1) supports 8-wire while the other four support 4-wire. This is due to the SoC IOMUX limitation, because all UART IPs are identical. — Five eCSPI (Enhanced CSPI) — Three I2C, supporting 400 kbps — Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/10001 Mbps — Four Pulse Width Modulators (PWM) — System JTAG Controller (SJC) — GPIO with interrupt capabilities — 8x8 Key Pad Port (KPP) — Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx — Two Controller Area Network (FlexCAN), 1 Mbps each
— Two Watchdog timers (WDOG) — Audio MUX (AUDMUX) — MLB (MediaLB) provides interface to MOST Networks (150 Mbps) The i.MX 6DualPlus/6QuadPlus processors integrate advanced power management unit and controllers: • Provide PMU, including LDO supplies, for on-chip resources • Use Temperature Sensor for monitoring the die temperature • Support DVFS techniques for low power modes • Use Software State Retention and Power Gating for Arm and MPE • Support various levels of system power modes • Use flexible clock gating control scheme The i.MX 6DualPlus/6QuadPlus processors use dedicated hardware accelerators to meet the targeted multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance at low power consumption numbers, while having the CPU core relatively free for performing other tasks. The i.MX 6DualPlus/6QuadPlus processors incorporate the following hardware accelerators: • VPU—Video Processing Unit • IPUv3H—Image Processing Unit version 3H (2 IPUs) • GPU3Dv6—3D Graphics Processing Unit (OpenGL ES 3.0) version 6 • GPU2Dv3—2D Graphics Processing Unit (BitBlt) version 3 • GPUVG—OpenVG 1.1 Graphics Processing Unit • 4 x PRE—Prefetch and Resolve Engine • 2 x PRG—Prefetch and Resolve Gasket • ASRC—Asynchronous Sample Rate Converter Security functions are enabled and accelerated by the following hardware: • Arm TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.) • SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking the access to the system debug features. • CAAM—Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and True and Pseudo Random Number Generator (NIST certified) • SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock • CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be configured during boot and by eFUSEs and will determine the security level operation mode as well as the TZ policy. • A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements: SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization

Tips on getting accurate quotes from suppliers. Please include the following in your inquiry:
1. Personal or business information
2. Provide product request in great detail
3. Inquiry for MOQ, Unit Price, etc




Please make sure your contact information is correct. Your message will be sent directly to the recipient(s) and will not be publicly displayed. We will never distribute or sell your personal information to third parties without your express permission.